244 research outputs found

    Effective Construction of a Class of Bent Quadratic Boolean Functions

    Full text link
    In this paper, we consider the characterization of the bentness of quadratic Boolean functions of the form f(x)=βˆ‘i=1m2βˆ’1Tr1n(cix1+2ei)+Tr1n/2(cm/2x1+2n/2),f(x)=\sum_{i=1}^{\frac{m}{2}-1} Tr^n_1(c_ix^{1+2^{ei}})+ Tr_1^{n/2}(c_{m/2}x^{1+2^{n/2}}) , where n=men=me, mm is even and ci∈GF(2e)c_i\in GF(2^e). For a general mm, it is difficult to determine the bentness of these functions. We present the bentness of quadratic Boolean function for two cases: m=2vprm=2^vp^r and m=2vpqm=2^vpq, where pp and qq are two distinct primes. Further, we give the enumeration of quadratic bent functions for the case m=2vpqm=2^vpq

    A Note on Cyclic Codes from APN Functions

    Full text link
    Cyclic codes, as linear block error-correcting codes in coding theory, play a vital role and have wide applications. Ding in \cite{D} constructed a number of classes of cyclic codes from almost perfect nonlinear (APN) functions and planar functions over finite fields and presented ten open problems on cyclic codes from highly nonlinear functions. In this paper, we consider two open problems involving the inverse APN functions f(x)=xqmβˆ’2f(x)=x^{q^m-2} and the Dobbertin APN function f(x)=x24i+23i+22i+2iβˆ’1f(x)=x^{2^{4i}+2^{3i}+2^{2i}+2^{i}-1}. From the calculation of linear spans and the minimal polynomials of two sequences generated by these two classes of APN functions, the dimensions of the corresponding cyclic codes are determined and lower bounds on the minimum weight of these cyclic codes are presented. Actually, we present a framework for the minimal polynomial and linear span of the sequence s∞s^{\infty} defined by st=Tr((1+Ξ±t)e)s_t=Tr((1+\alpha^t)^e), where Ξ±\alpha is a primitive element in GF(q)GF(q). These techniques can also be applied into other open problems in \cite{D}
    • …
    corecore